US009286125B2

a2 United States Patent

Smiley et al.

US 9,286,125 B2
Mar. 15, 2016

(10) Patent No.:
(45) Date of Patent:

(54) PROCESSING ENGINE IMPLEMENTING JOB
ARBITRATION WITH ORDERING STATUS

(71) Applicants:David A. Smiley, Chandler, AZ (US);
Naveen Lakkakula, Chandler, AZ (US);
Weiqiang Ma, Chandler, AZ (US);
Justin B. Diether, Phoenix, AZ (US);
Nitin N. Garegrat, Chandler, AZ (US)
(72) Inventors: David A. Smiley, Chandler, AZ (US);
Naveen Lakkakula, Chandler, AZ (US);
Weiqiang Ma, Chandler, AZ (US);
Justin B. Diether, Phoenix, AZ (US);
Nitin N. Garegrat, Chandler, AZ (US)
(73) Assignee: INTEL CORPORATION, Santa Clara,
CA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 360 days.
(21) Appl. No.: 13/829,118
(22) Filed: Mar. 14,2013
(65) Prior Publication Data
US 2014/0282579 Al Sep. 18, 2014
(51) Imt.ClL
GO6F 9/50 (2006.01)
(52) US.CL
CPC ... GO6F 9/5027 (2013.01); GO6F 2209/503

(2013.01)

an
\(

(58) Field of Classification Search

None

See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,952,825 B1* 10/2005 Cockxetal. 718/102
8,826,280 B1* 9/2014 Robertson etal. 718/100
2011/0078696 Al* 3/2011 Blackburn et al. 718/104
2013/0047164 Al* 2/2013 Ujibashi ..o 718/104

* cited by examiner

Primary Examiner — Umut Onat
(74) Attorney, Agent, or Firm — Lowenstein Sandler LLP

(57) ABSTRACT

A processing engine implementing job arbitration with order-
ing status is disclosed. A method of the disclosure includes
receiving, by a job assigner communicably coupled to a plu-
rality of processors, availability status from a plurality of job
rings, availability status from the plurality of processors, and
job entry completion status from an order manager, identify-
ing, based on the received job entry completion status, a set of
job rings from the plurality of job rings that do not exceed
threshold conditions maintained by the job assigner, select-
ing, from the identified set of job rings, a job ring from which
to pull a job entry for assignment, wherein the selecting is
based on the received availability status of the plurality of job
rings, and selecting, based on the received availability status
of the plurality of processors, a processor to receive the
assignment of the job entry for processing.

26 Claims, 6 Drawing Sheets

Receive order ID from processor of a completed job entry processed by the
processor

410

)

Identify job ring originating the job entry associated with the order ID
420

Determine current ID completion

number of the identified job ring
430

Yes

Complete processing of
Jjob entry by writing pointer
to response ring of job
ring

450

1

T
""" OrderID -
__cumrent ID completion numbeﬁ/

—

=T~
= -

No

Withhold job entry from
completing processing
460|

8end job entry completion status update to job assigner

a

US 9,286,125 B2

Sheet 1 of 6

Mar. 15, 2016

U.S. Patent

L 24nbi4

— —_ 091
—_ 08T 07
OFT 1un (s)uun Jajj04u0
Aeidsig Hinvnaa N WVES Aowsyy parelbau]
0ST (shiun 0c1 (shiun josuuooisyul
Js|onuon
sng \
/
91T (shun ayoeg paleys
N7TT e
(shiun (shiun
ayoed e e e e ayoen
NZIT 2100 VeIl 9100

DIT J0ss82014 uonediddy

BET
N Jossaoo.d

|00010.d

oEl
| J0SS900.d

[000304d

el
0 Josssooud

|00010.d

ZE1 (shusuodwo)
uoljenigly qor

DET auibuz
Buissasonld pazienads

007 @21a8q Bunndwod

US 9,286,125 B2

Sheet 2 of 6

Mar. 15, 2016

U.S. Patent

snels
Jsplo
10SS920.d

sneis
Bury qor

Z 2inbi4

0Ge¢ auibug Jossaooidon

dese
X 108$2001d0D

VZsce
0 Jossaooudon

0ce
- JaBeuep
v v v 10pI0
00¥%¢ d0v¢ vov¢e
N Jossedold |------- | Jossao0.d 0 Jossao0.d
|00030.1d |02030.d [02030.d
0l¢ Jaublissy qor SMEIS
Jabeuepy

18plo
2 Anus gol g Anua qofl v Alua gol
L Aue gol | T | Aiua—qol | Aus—qol
0 Anus qol 0 Anus~qof 0 Anua gol

D0€C W Bury qor g0¢ge | Bury qor V0¢gZ 0 Bury qor

=10

U.S. Patent Mar. 15, 2016 Sheet 3 of 6 US 9,286,125 B2

300
X Receive availability status from one or more job rings, availability status from one
or more processors, and job entry completion status from an order manager <,
310

L
Identify job rings that do not equal or exceed threshold of job entry assignments

to processors !
320

|
From the set of identified job rings, identify job rings that do not equal or exceed
threshold of job entries being withheld from completion by order manager based

on received job entry completion status from order manager 1
330

A
From the identified job rings that do not exceed either threshold, select a job ring
using an arbitration scheme and based on availability status of the one or more ‘

job rings ‘
40

GO

\
Determine available processors based on received availability status from the one |

Or mMore processors !
50

1Y)

\

Select a processor from the determined available processors using fair arbitration

J—

y
Assign job entry from head of selected job ring to the selected processor for
processing

370

Figure 3

U.S. Patent Mar. 15, 2016 Sheet 4 of 6

US 9,286,125 B2

processor

Receive order ID from processor of a completed job entry processed by the

1.9
iy
=)

y

Identify job ring originating the job entry associated with the order ID

Y
N
=]

y

Determine current ID completion number of the identified job ring

B

Order ID =
current ID completion number?

440

Yes

No

y

Complete processing of
job entry by writing pointer
to response ring of job
ring

Withhold job entry from
completing processing

460

450

Send job entry completion status update to

job assigner

Figure 4

US 9,286,125 B2

Sheet 5 of 6

Mar. 15, 2016

U.S. Patent

S 3¥NOIS
825 | yIyg | |-O€S
QN 3009 3030 3SM0W
I9VH0LS vIva 7257 WWoJ Z25-"| [a4v08AIY
J | 025) _
|
veS IS 8IS
0l olany S791N30 01 390149 Sng
6€G —
065 orc dl | 8eg
9065 cbs SOIHdY49
ddbggs 5H) ss A J43d-HOMH
ﬂ/y \ ﬁl/;y Y
085 [¢d| |ddl: : Had| Tdd| 05
e [[S I N N
Nw/m 99% 355 046G 3/C 975 NN/@
73] 765
AHONIW M N AHONTW
H0SS7904d H0SS3004d o

U.S. Patent

Mar. 15, 2016

PROCESSCR 602

PROCESSING
LOGIC 626

MAIN MEMORY §04

INSTRUCTIONS

A

626

GRAPHICS
PROCESSING |

Y

4

UNIT
622

VIDEO
PROCESSING

UNIT B
628

AUDIO

A

PROCESSING [«
UNIT
632

NETWORK
INTERFACE

DEVICE N
608

\‘

NETWORK
620

\

Sheet 6 of 6

US 9,286,125 B2

/600

| STATIC MEMORY

606

BUS

“ ®I' VIDEO DISPLAY

610

\/@

ALPHA-NUMERIC
INPUT DEVICE
612

J

CURSOR
CONTROL
DEVICE

614

SIGNAL
GENERATION
DEVICE
616

DATA STORAGE DEVICE

618

MACHINE-READABLE

MEDIUM 624

SOFTWARE
626

FIGURE 6

US 9,286,125 B2

1
PROCESSING ENGINE IMPLEMENTING JOB
ARBITRATION WITH ORDERING STATUS

TECHNICAL FIELD

The embodiments of the disclosure relate generally to pro-
cessing devices and, more specifically, relate to a processing
engine implementing job arbitration with ordering status.

BACKGROUND

Communications protocol processing, such as for encryp-
tion, compression, or datapath processing typically involves a
high-level multi-threaded computational engine issuing jobs
having communication processing tasks to lower-level pro-
cessors. These lower-level processors utilize a common set of
specialized coprocessors that process the communications
data. Each processing thread provides a unique set of tasks
that are to be processed, and processing each of the tasks may
utilize a subset of the specialized coprocessors.

Because there are typically not enough lower-level proces-
sors and coprocessors to perfectly match the number of tasks
to perform, these resources (i.e., processors and coproces-
sors) should be fairly allocated so that the high-level multi-
threaded computational engine can finish its tasks. The typi-
cal solution to this fair allocation of resources is to use a
dedicated processor thread to manage these resources. The
dedicated processor thread allocates a new thread’s job when
anumber of jobs in an incoming queue falls below a threshold
value. This traditional solution utilizes an expensive higher-
level thread and also produces a delayed response to lower-
level resources becoming available.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be understood more fully from the
detailed description given below and from the accompanying
drawings of various embodiments of the disclosure. The
drawings, however, should not be taken to limit the disclosure
to the specific embodiments, but are for explanation and
understanding only.

FIG. 1 is a computing device implementing a processing
engine implementing job arbitration with ordering status
according to embodiments of the disclosure;

FIG. 2 is a block diagram illustrating a processing engine
implementing job arbitration with status according to
embodiments of the disclosure;

FIG. 3 is a flow diagram illustrating a method for imple-
menting job arbitration with ordering status by a job assigner
according to an embodiment of the disclosure;

FIG. 4 is a flow diagram illustrating a method for imple-
menting job arbitration with ordering status by an order man-
ager according to an embodiment of the disclosure;

FIG. 5 is a block diagram of a computer system according
to one embodiment; and

FIG. 6 illustrates a block diagram of one embodiment of a
computer system.

DETAILED DESCRIPTION

Embodiments of the disclosure provide a processing
engine implementing job arbitration with ordering status. In
one embodiment, the processing engine is capable of process-
ing concurrent jobs by tracking additional information about
jobs in progress and jobs awaiting order completion. The
processing engine may include job arbitration components
(e.g., a job assigner and an order manager) to provide job

10

15

20

25

30

35

40

45

50

55

60

65

2

arbitration with ordering status. The job arbitration compo-
nents may utilize information (e.g., availability status from
job rings, availability status from processors, job completion
status from an order manger, etc.) from processors of the
processing engine to determine when additional jobs/tasks
can be accepted from higher-level processors. In one embodi-
ment, the job arbitration component selects additional jobs
based on an allocation of a number of coprocessors, a number
of processors available, a number of jobs/tasks finished but
awaiting an ordered completion, and a pattern of allocation
(i.e., round-robin, weighted round-robin or another schedul-
ing algorithm).

Previous solutions to provide fair allocation of processing
resources used a dedicated processor thread to manage these
resources. The dedicated processor thread allocates a new
thread’s job when a number of jobs in an incoming queue falls
below a threshold value. This traditional solution utilizes an
expensive higher-level thread and also produces a delayed
response to lower-level resources becoming available. The
delayed response results from the processor utilizing several
processor instructions to first evaluate the conditions (queue
status, etc.), then to response to the conditions and decide an
action. This results in bandwidth scaling issues and uses more
power to complete the functions. Embodiments of the inven-
tion allow a higher utilization of a limited amount of copro-
cessor resources, because the job arbitration components
monitor jobs that are being processed, as well as jobs that are
completed but have not satisfied ordering goals yet. Embodi-
ments also scale to higher throughput demands, as the arbiter
and threshold logic within the job arbitration components
may be expanded easily without using additional higher-level
processor threads.

Although the following embodiments may be described
with reference to specific integrated circuits, such as in com-
puting platforms or microprocessors, other embodiments are
applicable to other types of integrated circuits and logic
devices. Similar techniques and teachings of embodiments
described herein may be applied to other types of circuits or
semiconductor devices. For example, the disclosed embodi-
ments are not limited to desktop computer systems or Ultra-
books™. And may be also used in other devices, such as
handheld devices, tablets, other thin notebooks, systems on a
chip (SOC) devices, and embedded applications. Some
examples of handheld devices include cellular phones, Inter-
net protocol devices, digital cameras, personal digital assis-
tants (PDAs), and handheld PCs. Embedded applications
typically include a microcontroller, a digital signal processor
(DSP), a system on a chip, network computers (NetPC), set-
top boxes, network hubs, wide area network (WAN) switches,
or any other system that can perform the functions and opera-
tions taught below.

Although the following embodiments are described with
reference to a processor, other embodiments are applicable to
other types of integrated circuits and logic devices. Similar
techniques and teachings of embodiments of the present
invention can be applied to other types of circuits or semicon-
ductor devices that can benefit from higher pipeline through-
put and improved performance. The teachings of embodi-
ments of the present invention are applicable to any processor
or machine that performs data manipulations. However, the
present invention is not limited to processors or machines that
perform 512 bit, 256 bit, 128 bit, 64 bit, 32 bit, or 16 bit data
operations and can be applied to any processor and machine
in which manipulation or management of data is performed.
In addition, the following description provides examples, and
the accompanying drawings show various examples for the
purposes of illustration. However, these examples should not

US 9,286,125 B2

3

be construed in a limiting sense as they are merely intended to
provide examples of embodiments of the present invention
rather than to provide an exhaustive list of all possible imple-
mentations of embodiments of the present invention.

As more computer systems are used in internet, text, and
multimedia applications, additional processor support has
been introduced over time. In one embodiment, an instruction
set may be associated with one or more computer architec-
tures, including data types, instructions, register architecture,
addressing modes, memory architecture, interrupt and excep-
tion handling, and external input and output (I/O).

In one embodiment, the instruction set architecture (ISA)
may be implemented by one or more micro-architectures,
which includes processor logic and circuits used to imple-
ment one or more instruction sets. Accordingly, processors
with different micro-architectures can share at least a portion
of'a common instruction set. For example, Intel® Pentium 4
processors, Intel® Core™ processors, and processors from
Advanced Micro Devices, Inc. of Sunnyvale Calif. imple-
ment nearly identical versions of the x86 instruction set (with
some extensions that have been added with newer versions),
but have different internal designs. Similarly, processors
designed by other processor development companies, such as
ARM Holdings, Ltd., MIPS, or their licensees or adopters,
may share at least a portion acommon instruction set, but may
include different processor designs. For example, the same
register architecture of the ISA may be implemented in dif-
ferent ways in different micro-architectures using new or
well-known techniques, including dedicated physical regis-
ters, one or more dynamically allocated physical registers
using a register renaming mechanism (e.g., the use of a Reg-
ister Alias Table (RAT), a Reorder Bufter (ROB) and a retire-
ment register file. In one embodiment, registers may include
one or more registers, register architectures, register files, or
other register sets that may or may not be addressable by a
software programmer.

In one embodiment, an instruction may include one or
more instruction formats. In one embodiment, an instruction
format may indicate various fields (number of bits, location of
bits, etc.) to specity, among other things, the operation to be
performed and the operand(s) on which that operation is to be
performed. Some instruction formats may be further broken
defined by instruction templates (or sub formats). For
example, the instruction templates of a given instruction for-
mat may be defined to have different subsets of the instruction
format’s fields and/or defined to have a given field interpreted
differently. In one embodiment, an instruction is expressed
using an instruction format (and, if defined, in a given one of
the instruction templates of that instruction format) and speci-
fies or indicates the operation and the operands upon which
the operation will operate.

FIG. 1 is a computing device 100 implementing a process-
ing engine implementing job arbitration with ordering status
according to an embodiment of the disclosure. Computing
device 100 includes a system on a chip (SoC) that may
include one or more of the cores 112A-112N. Computing
device 100 may be a laptop, desktop, handheld PC, personal
digital assistant, tablet computing device, engineering work-
station, server, network device, network hub, switch, embed-
ded processor, digital signal processor (DSP), graphics
device, video game device, set-top box, micro controller, cell
phone, portable media player, hand held device, or any other
various other electronic device, as is suitable. In general, a
huge variety of systems or electronic devices capable of
incorporating a processor and/or other execution logic as
disclosed herein are generally suitable.

40

45

4

As illustrated, computing device 100 includes an intercon-
nect unit(s) 120 coupled to an application processor 110
which includes a set of one or more cores 112A-N and shared
cache unit(s) 116, a specialized processing unit 130; a bus
controller unit(s) 150; an integrated memory controller unit
(s) 160, a static random access memory (SRAM) unit 170, a
direct memory access (DMA) unit 180, and a display unit 140
for coupling to one or more external displays. Other software,
hardware, and firmware units may also be part of computing
device 100, even though they are not specifically illustrated.

Application processor 110 is a multicore processor with
multiple cores 112A-N. In some embodiments, one or more
of the cores 112A-N are capable of multi-threading. A
memory hierarchy includes one or more levels of cache
114A-N within the cores 112A-N, a set or one or more shared
cache units 116, and external memory (not shown) coupled to
the set of integrated memory controller units 160. The set of
shared cache units 116 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or other
levels of cache, a last level cache (LL.C), and/or combinations
thereof. While in one embodiment a ring based interconnect
unit 120 interconnects the components of computing device
100, alternative embodiments may use any number of well-
known techniques for interconnecting such units.

The cores 112A-N may be homogenous or heterogeneous
in terms of architecture and/or instruction set. For example,
some of the cores 112A-N may be in order while others are
out-of-order. As another example, two or more of the cores
112A-N may be capable of execution the same instruction set,
while others may be capable of executing only a subset of that
instruction set or a different instruction set.

The processor 110 may be a general-purpose processor,
such as a Core™ 13, i5, i7, 2 Duo and Quad, Xeon™, Ita-
nium™, XScale™ or StrongARM™ processor, which are
available from Intel™ Corporation, of Santa Clara, Calif.
Alternatively, the processor may be from another company.
The processor 110 may be a special-purpose processor, such
as, for example, a network or communication processor, com-
pression engine, graphics processor, co-processor, embedded
processor, or the like. The processor 110 may be implemented
on one or more chips. The application processor 110 may be
a part of and/or may be implemented on one or more sub-
strates using any of a number of process technologies, such
as, for example, BiICMOS, CMOS, or NMOS.

In one embodiment, application processor 110 may offload
processing tasks to the specialized processing engine 130.
Specialized processing engine 130 may include a set of pro-
tocol processors 0-N 134, 136, 138 that perform specialized
operations, such as communication protocol processing for
providing communications (e.g., encryption, compression,
datapath processing, etc.) to and from computing device 100,
image processing for providing still and/or video camera
functionality, audio processing for providing hardware audio
acceleration, and/or video processing for providing video
encode/decode acceleration, to name a few examples. In
some embodiments, protocol processors 0-N 134-138 are
cores of the specialized processor 130.

In embodiments of the disclosure, the specialized process-
ing engine 130 includes a job arbitration component 132 to
provide job arbitration with ordering status. In one embodi-
ment, job arbitration components may include hardware,
software, firmware, or some combination of the above to
implement its tasks. For example, job arbitration component
132 may be implemented as hardware allocation logic of the
specialized processor 130 having protocol processing cores
0-N 134-138.

US 9,286,125 B2

5

The job arbitration component 132 may utilize information
from protocol processors 0-N 134-138 to determine when
additional jobs/tasks can be accepted from the cores 112A-N.
In one embodiment, job arbitration component 132 selects
additional jobs based on four factors: 1) allocation of number
of coprocessors; 2) number of processors available; 3) num-
ber of jobs finished but awaiting an ordered completion; and
4) default pattern of allocation (i.e., round-robin, weighted
round-robin or another scheduling algorithm). In one
embodiment, the job arbitration component 132 may include
a job assigner component and an order manager component
that are independent hardware circuitry blocks programmed
by the application processor 110. The job assigner may pro-
vide inputs to the protocol processors 134-138 via arbitration
among rings of tasks (e.g., job entries) assigned from cores
112A-112N of the application processor 110 to the special-
ized processing engine 130. The job assigner may use infor-
mation from the order manger to determine if a job entry can
actually be completed. The order manager determines the
appropriate order in which job entries are put back into the
ring from which they originated (in order to be returned to the
application processor 110). Further details of job arbitration
component 132 are now described with respect to FIG. 2.

FIG. 2 is a block diagram illustrating a processing engine
200 implementing job arbitration with ordering status accord-
ing to embodiments of the disclosure. In one embodiment,
processing engine 200 is the same as specialized processing
engine 130 of FIG. 1. Processing engine 200 includes job
arbitration components of a job assigner 210 and an order
manager 220 that may be implemented as hardware, software,
firmware, or some combination of the above. In one embodi-
ment, the job arbitration components of the job assigner 210
and the order manager 220 are the same as job arbitration
components 132 of FIG. 1. The job assigner 210 and order
manager 220 work together to utilize information from pro-
tocol processors 0-N 240A-C to indicate when additional jobs
can be accepted from higher-level processors.

The processing engine 200 may include N lower-level pro-
tocol processors 0-N 240A-C, with each protocol processor
0-N 240A-C capable of processing the instructions of one job.
The invention also supports a coprocessor engine 250, con-
taining X individual coprocessors 252A-252B, with various
protocol support for specialized processing provided by pro-
cessing engine 200. In one embodiment, protocol processors
0-N 240A-C are the same as protocol processors 0-N 134-138
of FIG. 1, and the higher-level processor that is providing the
jobs may be application processor 110. Note that the copro-
cessors 252A-252B may be external to processing engine 200
and are a shared resource utilized by protocol processors 0-N
240A-C.

Incoming jobs from a higher-level processor, such as appli-
cation processor 110 of FIG. 1, that are awaiting processing
by processing engine 200 may be maintained in multiple job
ring queues, shown as job ring 0-M 230A-C. In one embodi-
ment, the job rings 230A-C may be located in memory close
to the protocol processors 240A-C. However, in other
embodiment, job rings 230A-C may be located in system
memory near the assigning application processor. Job rings
230A-C may be implemented as hardware, software, firm-
ware, or any combination of the above. For example, each job
ring 230A-C may be implemented as a circular buffer. The job
rings 230A-C may be configured to support the jobs (e.g.,
tasks) associated with one individual high-level processing
thread of the higher-level processor. Each job ring 230A-C
may support a unique number of incoming jobs, as shown
with depths A, B, C in the FIG. 2.

10

15

20

25

30

35

40

45

50

55

60

65

6

In one embodiment, each job ring 0-M 230A-C includes a
request ring portion and a response ring portion. The request
ring may include the job entries waiting to be processed by
processing engine 200. The response ring may include the job
entries that originated in the request ring and have been com-
pletely processed by the processing engine 200. The job
entries in the response ring are to be retired back to the
higher-level processor. Note that in embodiments of the dis-
closure, the number of protocol processors 240A-C does not
have to match the number of coprocessors 252A-252B or job
rings 230A-C.

The order manager 220 may be implemented as hardware,
software, firmware, or any combination of the above. In one
embodiment, the order manager 220 is responsible for mark-
ing jobs ‘complete’ when the job entries of the job are com-
pleted in a correct response order. The order manager 220
ensures response ordering of whole jobs that came from a job
ring 230A-C, relative to other jobs in that ring 230A-C. In one
embodiment, the response order of a particular job entry
within a job is indicated within the job entry (e.g., via an order
identifier (ID) and/or order instruction). Note that the order
manager 220 is not concerned with ordering of individual
instructions within a job or job entry.

In embodiments of the invention, a job entry may be com-
pletely finished by a protocol processor 0-N 240A-C, but the
order manager 220 may withhold the job entry from being
indicated as finished with respect to the job ring 230A-C. In
one embodiment, the order manager 220 withholds a job
entry from finishing by preventing the processed job entry
from being written back (or otherwise indicated as complete)
to a response portion of the job ring 0-M 230A-C originating
the job entry. The order manager 220 may withhold a job
entry from finishing when an order block/order ID associated
with the job entry indicates that proper ordering within the
associated job of the job entry has not yet been satisfied (e.g.,
other job entries prior to the job entry at issue in terms of order
ID have not been processed yet by protocol processors 0-N
240A-C).

In one embodiment, the order manager tracks a current
completion ID number for each job ring 230A-C. If the
received order ID for a processed job entry is greater than this
1D, then the order manager 220 prevents the job entry from
completing (e.g., does not write to or indicate completion of
the job entry at the job ring 230A-C). When the current
completion ID number is updated to equal a currently with-
held job or a job entry order ID reported as completed from
the protocol processor 240A-C, then the order manager 220
sends out the job entry (e.g., a pointer to that job entry) that
matches the current completion ID number for completion at
the corresponding job ring 230A-C. The order manager 220
also increments the current completion ID number for the job
ring 230A-C being tracked at the order manager 220.

In some embodiments, in the window of time where a job
entry is withheld by order manager 220, the protocol proces-
sor 240A-C that processed that job entry can accept another
job entry while the original job entry remains dormant, until
the ordering is satisfied. This may allow additional job entries
to be scheduled and efficiently uses hardware resources of
processing engine 200.

In one embodiment, the job assigner 210 selects jobs to
pass to protocol processors 0-N 240A-C for specialized pro-
cessing based on four factors: 1) allocation of number of
coprocessors 252A-B; 2) number of processors 0-N avail-
able; 3) number of jobs finished but awaiting an ordered
completion; and 4) a default pattern of allocation (e.g., round-
robin, weighted round-robin, or another scheduling algo-
rithm). The job assigner 210 may receive availability status

US 9,286,125 B2

7

from the job rings 230A-C, availability status from the pro-
tocol processors 240A-C, and job entry completion status
from the order manager 220. Availability status from the job
rings 0-M 230A-C may indicate if a new job entry is available
for assignment. Availability status from protocol processors
0-N 240A-C may indicate whether one of the individual
protocol processors 240A-C is available to receive a job entry
for processing. Job entry completion status from order man-
ager 220 may indicate whether job entries from each job ring
230A-C have finished processing, but are awaiting proper
ordering.

Using this status information, the job assigner 210 may
compare the received information to pre-programmed thresh-
old values. In one embodiment, a thresholding component
(e.g., implemented in hardware, software, firmware, or any
combination of the above) may perform the comparing. For
example, the job assigner 210 may maintain registers that
indicate a threshold condition for job entries on a per-job ring
230A-C basis. For example, the job assigner 210 may accept
a new job entry from a job ring 0 230A for assignment to any
one of protocol processors 0-N 240A-C when all threshold
conditions for that job ring 0 230A have been satisfied.
Assume that the threshold conditions for job ring 0 230A are
configured at job assigner 210 to include a total of 2 job
entries being processed by the protocol processors 0-N 240 A-
C, in addition to 2 job entries being held (e.g., withheld from
completion) by the order manager 220 for job ring 0 230A.
The job assigner 210 may select a job entry from the job ring
0 230 A when these threshold conditions are not exceeded by
job ring 0 230A.

Based on the comparison to the threshold values, the job
assigner 210 may accept an additional job from job rings
230A-C and assign it to one of the connected protocol pro-
cessors 240A-C. In one embodiment, an arbitration compo-
nent (not shown) of the job assigner 210 may perform the
assignment of job entries to processors. The job assigner 210
may select a job ring 230A-C on a round-robin basis from the
set of job rings 230A-C that have satisfied the threshold
conditions, as it has resources available. When a job ring
230A-C is selected, the job assigner 210 may retrieve the job
entry located at the head of the job ring 230A-C for assign-
ment to any of the available protocol processors 0-N 240A-C.
Inone embodiment, the selection of'a processor 240 A-C from
available protocol processors 240A-C (based on processor
availability status received) may be performed using fair arbi-
tration between the protocol processors 240A-C.

In one embodiment, when a protocol processor 0-N
240A-C receives a job from job assigner 210, it may generate
a low-level instruction for the job entry to pass to the copro-
cessor engine 250 for completion of the specialized process-
ing of the job entry. The coprocessor engine 250 may utilize
one or more of coprocessors 0-X 252A-B to perform the
processing of job entry. Once the one or more selected copro-
cessors 252A-B finish processing of the job entry, the job
entry is passed to the order manager 220 to maintain the job
ordering of the job entry, as discussed above.

In some embodiments, job entries of a job ring 230A-C
may not have any associated response ordering. In this situ-
ation, the order manager 220 may be bypassed, and the job
entry indicated as completely in the job ring directly from the
protocol processor 240A-C.

FIG. 3 is a flow diagram illustrating a method 300 for
implementing job arbitration with ordering status by a job
assigner according to an embodiment of the disclosure.
Method 300 may be performed by processing logic that may
comprise hardware (e.g., circuitry, dedicated logic, program-
mable logic, microcode, etc.), software (such as instructions

10

15

20

25

30

35

40

45

50

55

60

65

8

run on a processing device), firmware, or a combination
thereof. In one embodiment, method 300 is performed by job
assigner 210 of FIG. 2. Although method 300 is shown in
sequential order, some or all of blocks 310-360 may be per-
formed in parallel to increase performance.

Method 300 begins at block 310 where an availability
status from one or more job rings, an availability status from
one or more processors, and a job entry completion status
from an order manager are received by a job assigner. The
availability status from the job rings may indicate if a new job
entry is available for assignment from the job rings. The
availability status from processors may indicate whether one
of'the individual processors is available to receive a job entry
for processing. The job entry completion status may indicate
whether job entries from each job ring have finished process-
ing, but are awaiting proper ordering.

At block 320, job rings that do not equal or exceed a
threshold number of job entry assignments to processors are
identified. In one embodiment, the job assigner may include
registers that maintain threshold conditions for job entries on
a per-job ring basis. For example, a register may store a
threshold value defining a number of job entries from a job
ring that can currently be assigned out from a job ring to
processors for processing. The job assigner may maintain
status information for each job ring that indicates how many
job entries are currently being processed from the job ring.
The job assigned may utilize this status information to iden-
tify those job rings that have are below the threshold condition
of job entry assignments.

Then, at block 330, the job assigner may identify job rings,
from the set of identified job rings from block 320, which do
not equal or exceed a threshold number of job entries being
withheld from completion by an order manager. In one
embodiment, the received job entry completion status infor-
mation received from the order manager is used determine
how many job entries from each job ring are being withheld
from completion. This is compared to a threshold condition
maintained by the job assigner to determine the job rings that
are below the threshold condition of job entries being with-
held.

Subsequently, at block 340, a job ring is selected from the
identified job rings from block 330 using an arbitration
scheme. In addition, the job ring selected may be based on the
received availability status sent from the one or more job rings
in that the job ring selected should be available for job entry
assignment purposes. In one embodiment, the arbitration
scheme may include weighted round-robin arbitration, where
each job ring is assigned a weight, and selection of a job ring
proceeds in a round-robin fashion based on the weight. Other
arbitration schemes may also be utilized in embodiments of
the invention.

Then, at block 350, available processors are determined
from the one or more processors based on the received avail-
ability status of the one or more processors. At block 360, a
processor is selected from the determined available proces-
sors. In one embodiment, the processor is selected utilizing a
fair arbitration scheme, such as a round robin arbitration. In
one embodiment, if any of the conditions discussed in blocks
310 through 360 are not satisfied, then method 300 may return
to block 310 to continue to arbitrate among job rings. Lastly,
atblock 370, ajob entry from the head of the selected job ring
is assigned to the selected processor for processing.

FIG. 4 is a flow diagram illustrating a method 400 for
implementing job arbitration with ordering status by an order
manager according to an embodiment of the disclosure.
Method 400 may be performed by processing logic that may
comprise hardware (e.g., circuitry, dedicated logic, program-

US 9,286,125 B2

9

mable logic, microcode, etc.), software (such as instructions
run on a processing device), firmware, or a combination
thereof. In one embodiment, method 400 is performed by
order manager 220 of FIG. 2.

Method 400 begins at block 410 where an order ID from a
processor is received. In one embodiment, the order ID is
associated with a job entry that the processors completed
processing. The order ID may refer to a response order of the
job entry within a job to which the job entry belongs. In some
embodiment, the processing of the job entry included the
processor passing low-level instructions associated with the
job entry to one or more coprocessors specialized in process-
ing the low-level instructions of the job entry. In one embodi-
ment, there is an implicit mapping of a job entry ID to a ring
number of the originating job ring and the order ID.

At block 420, a job ring that originated the job entry asso-
ciated with the received order ID is identified. In one embodi-
ment, the job ring has the completion ID, but the job entry is
pulled oft the job ring and no longer exists on the job ring. The
processor can track the job information, send the completion
ID to the order manager, and send a status update to the
response ring. Then, at block 430, a current ID completion
number of the identified job ring is determined. In one
embodiment, the order manager maintains a register for each
job ring, where the register stores a value indicating the last
job entry order ID that was marked as completed for the job
ring.

At decision block 440, it is determined whether the
received order ID is equal to the current ID completion num-
ber for the job ring. If so, then method 400 proceeds to block
450 where processing of the job entry is completed by writing
a completion message of the job entry to a response ring
portion of the job ring. In some embodiment, other processes
for indicating completed processing of'a job entry may also be
utilized. Then, at block 470, a job entry completion status
update is sent to the job assigner to inform the job assigner
that the particular job entry for the job ring has completed
processing.

If, at decision block 440, the order ID is not equal to the
current ID completion number, then method 400 proceeds to
block 460. At block 460, the job entry is withheld from
processing completion by the order manager. In one embodi-
ment, the order manager may hold a completion message for
the job entry from sending to the job ring until the ordering
requirements of the job ring are met. The ordering require-
ments may be denoted by a value of the order ID. For
example, assume job entries assigned order 1D values 3, 4, 5
are sent to 3 separate protocol processors in parallel and then
completed out of order (i.e., 5, 4, 3). The order manager may
hold the completion messages for numbers 4 and 5 until
number 3 is ready. Then, the order manger would return the
messages in the order of 3, 4, 5.

Then, at block 470, a job entry completion status update
(e.g., an ID of the request ring associated with the completion
message) is sent to the job assigner to inform the job assigner
that the particular job entry for the job ring is still waiting on
completion at the order manager. From block 470, method
400 returns to block 410 for the order manager to continue
receiving pointers and order IDs from the processors.

Referring now to FIG. 5, shown is a block diagram of a
system 500 in accordance with an embodiment of the present
invention. As shown in FIG. 5, multiprocessor system 500 is
a point-to-point interconnect system, and includes a first pro-
cessor 570 and a second processor 580 coupled via a point-
to-point interconnect 550. While shown with only two pro-
cessors 570, 580, it is to be understood that the scope of
embodiments of the invention is not so limited. In other

40

45

50

55

10

embodiments, one or more additional processors may be
present in a given processor. In one embodiment, the multi-
processor system 500 may implement job arbitration with
ordering status as described herein.

Processors 570 and 580 are shown including integrated
memory controller units 572 and 582, respectively. Processor
570 also includes as part of its bus controller units point-to-
point (P-P) interfaces 576 and 578; similarly, second proces-
sor 580 includes P-P interfaces 586 and 588. Processors 570,
580 may exchange information via a point-to-point (P-P)
interface 550 using P-P interface circuits 578, 588. As shown
in FIG. 5, IMCs 572 and 582 couple the processors to respec-
tive memories, namely a memory 532 and a memory 534,
which may be portions of main memory locally attached to
the respective processors.

Processors 570, 580 may each exchange information with
a chipset 590 via individual P-P interfaces 552, 554 using
point to point interface circuits 576, 594, 586, 598. Chipset
590 may also exchange information with a high-performance
graphics circuit 538 via a high performance interconnect 539
with a high-performance graphics interface 592.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 590 may be coupled to a first bus 516 via an
interface 596. In one embodiment, first bus 516 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O inter-
connect bus, although the scope of the present invention is not
so limited.

As shown in FIG. 5, various [/O devices 514 may be
coupled to first bus 516, along with a bus bridge 518 which
couples first bus 516 to a second bus 520. In one embodiment,
second bus 520 may be a low pin count (LPC) bus. Various
devices may be coupled to second bus 520 including, for
example, a keyboard and/or mouse 522, communication
devices 527 and a storage unit 528 such as a disk drive or other
mass storage device which may include instructions/code and
data 530, in one embodiment. Further, an audio /O 524 may
be coupled to second bus 520. Note that other architectures
are possible. For example, instead of the point-to-point archi-
tecture of FIG. 5, a system may implement a multi-drop bus or
other such architecture.

FIG. 6 illustrates a diagrammatic representation of a
machine in the example form of a computer system 600
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of aserver or aclient
device in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also be
taken to include any collection of machines that individually
or jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein.

US 9,286,125 B2

11

The computer system 600 includes a processing device
602, a main memory 604 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
(such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 606 (e.g., flash memory,
static random access memory (SRAM), etc.), and a data stor-
age device 618, which communicate with each other via a bus
630.

Processing device 602 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device may be complex instruction set computing (CISC)
microprocessor, reduced instruction set computer (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, or processor implementing other instruction sets,
or processors implementing a combination of instruction sets.
Processing device 602 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
or the like. In one embodiment, processing device 602 may
include one or processing cores. The processing device 602 is
configured to execute the processing logic 626 for performing
the operations and steps discussed herein. In one embodi-
ment, processing device 602 is the same as specialized pro-
cessing engine 130 described with respect to FIG. 1 that
implements job arbitration with ordering status as described
herein with embodiments of the disclosure.

The computer system 600 may further include a network
interface device 608 communicably coupled to a network
620. The computer system 600 also may include a video
display unit 610 (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)), an alphanumeric input device 612
(e.g., akeyboard), a cursor control device 614 (e.g., a mouse),
and a signal generation device 616 (e.g., a speaker). Further-
more, computer system 600 may include a graphics process-
ing unit 622, a video processing unit 628, and an audio pro-
cessing unit 632.

The data storage device 618 may include a machine-acces-
sible storage medium 624 on which is stored software 626
implementing any one or more of the methodologies of func-
tions described herein, such as implementing job arbitration
with ordering status as described above. The software 626
may also reside, completely or at least partially, within the
main memory 604 as instructions 626 and/or within the pro-
cessing device 602 as processing logic 626 during execution
thereof by the computer system 600; the main memory 604
and the processing device 602 also constituting machine-
accessible storage media.

The machine-readable storage medium 624 may also be
used to store instructions 626 implementing job arbitration
components that implement job arbitration with ordering sta-
tus, such as described with respect to job arbitration compo-
nents 132 in FIG. 1, and/or a software library containing
methods that call the above applications. While the machine-
accessible storage medium 628 is shown in an example
embodiment to be a single medium, the term “machine-ac-
cessible storage medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more sets of instructions. The term “machine-acces-
sible storage medium” shall also be taken to include any
medium that is capable of storing, encoding or carrying a set
of instruction for execution by the machine and that cause the
machine to perform any one or more of the methodologies of
the present invention. The term “machine-accessible storage

10

15

20

25

30

35

40

45

50

55

60

65

12

medium” shall accordingly be taken to include, but not be
limited to, solid-state memories, and optical and magnetic
media.

The following examples pertain to further embodiments.
Example 1 is a system for implementing job arbitration with
ordering status comprising a plurality of job rings to receive
jobs from an originating processing device, a plurality of
processors communicably coupled with a plurality of copro-
cessors, and an order manager communicably coupled to the
plurality of processors. The system of Example 1 further
comprises a job assigner communicably coupled to the plu-
rality of the job rings and the plurality of processors, the job
assigner to receive availability status from each of the plural-
ity of job rings, availability status from each of the plurality of
processors, and job entry completion status from an order
manager, and select, based on both of the received availability
statuses and the job entry completion status, a processor to
receive the assignment of a job entry from one of the plurality
of' job rings for processing.

In Example 2, the subject matter of Example 1 can option-
ally include wherein the job assigner further to identify, based
on the received job entry completion status, a set of job rings
from the plurality of job rings that do not exceed threshold
conditions maintained by the job assigner, and select, from
the identified set of job rings, a job ring from which to pull a
job entry for assignment, wherein the selecting is based on the
received availability status of the plurality of job rings.

In Example 3, the subject matter of any one of Examples
1-2 can optionally include wherein each of the job rings tracks
tasks corresponding to a thread of the originating processing
device. In Example 4, the subject matter of any one of
Examples 1-3 can optionally include wherein the order man-
ager further to receive an order identifier (ID) of the job entry
when the selected processor completes processing of the job
entry, determine the job ring from which the job entry origi-
nated, determine a current order ID completion number asso-
ciated with the determined job ring, when the determined
current order ID completion number equals the received order
1D of the job entry, complete processing of the job entry, and
when the determined current order ID completion number
does not equal the received order ID, withhold the job entry
from completion until the current order ID completion num-
ber does equal the received order 1D.

In Example 5, the subject matter of any one of Examples
1-5 can optionally include wherein withholding the job entry
from completion further comprises the order manager to
place a completion message for the job entry and the received
order ID in a queue, and send a job entry completion status
update to the job assigner that informs the job assigner that the
job entry is awaiting completion at the order manager. In
Example 6, the subject matter of any one of Examples 1-5 can
optionally include wherein completing the processing of the
job entry further comprises the order manager to write of the
completion message for the job entry to a response ring of the
jobring originating the job entry, and send a job entry comple-
tion status update to the job assigner that informs the job
assigner that processing of the job entry is completed.

In Example 7, the subject matter of any one of Examples
1-6 can optionally include wherein the threshold conditions
comprise a number of pending job entries per job ring that can
be pending processing by the one or more processors, and a
number of job entries per job ring that can be awaiting
completion at the order manager. In Example 8, the subject
matter of any one of Examples 1-7 can optionally include
wherein each job ring of the plurality of job rings is imple-

US 9,286,125 B2

13

mented as a circular buffer, and wherein the job assigner
further to select the job entry from the head of the selected job
ring.

In Example 9, the subject matter of any one of Examples
1-8 can optionally include wherein the job assigner further to
track, for each job ring of the plurality of job rings, a number
of job entries from the job ring that are currently being pro-
cessed by the one or more processors. In Example 10, the
subject matter of any one of Examples 1-9 can optionally
include wherein the job assigner to identify the set of job rings
is further based on the tracked number of job entries for each
job ring. All optional features of the system described above
may also be implemented with respect to the method or pro-
cess described herein.

Example 11 is a method for implementing job arbitration
with ordering status comprising receiving, by a job assigner
communicably coupled to a plurality of processors, availabil-
ity status from a plurality of job rings, availability status from
the plurality of processors, and job entry completion status
from an order manager, identifying, based on the received job
entry completion status, a set of job rings from the plurality of
job rings that do not exceed threshold conditions maintained
by the job assigner, selecting, from the identified set of job
rings, ajob ring from which to pull ajob entry for assignment,
wherein the selecting is based on the received availability
status of the plurality of job rings, and selecting, based on the
received availability status of the plurality of processors, a
processor to receive the assignment of the job entry for pro-
cessing.

In Example 12, the subject matter of Example 11 can
optionally include wherein each of the job rings tracks tasks
corresponding to a thread of the originating processing
device. In Example 13, the subject matter of any one of
Examples 11-12 can optionally include further comprising
receiving, from the order manager, a job entry completion
status update that indicates the job entry withheld at the order
manager, wherein the job entry is withheld by the order man-
ager when, subsequent to processing of the job entry at the
selected processor, an order identifier (ID) of the job entry
does not match a current order ID completion number of the
job ring that originated the job entry.

In Example 14, the subject matter of any one of Examples
11-13 can optionally include wherein completing the pro-
cessing of the job entry further comprises the order manager
to receive, from the order manager, a job entry completion
status update that indicates the job entry is complete, wherein
the job entry is indicated as complete by the order manager
when, subsequent to processing of the job entry at the selected
processor, an order identifier (ID) of the job entry matches a
current order ID completion number of the job ring that
originated the job entry. In Example 15, the subject matter of
any one of Examples 11-14 can optionally include wherein
the threshold conditions comprise a number of pending job
entries per job ring that can be pending processing by the one
or more processors, and a number of job entries per job ring
that can be awaiting completion at the order manager.

In Example 16, the subject matter of any one of Examples
11-15 can optionally include wherein each job ring of the
plurality of job rings is implemented as a circular buffer. In
Example 17, the subject matter of any one of Examples 11-16
can optionally include further comprising selecting the job
entry from the head of the selected job ring.

In Example 18, the subject matter of any one of Examples
11-17 can optionally include further comprising tracking, for
each job ring of the plurality of job rings, a number of job
entries from the job ring that are currently being processed by
the one or more processors. In Example 19, the subject matter

10

15

20

25

30

35

40

45

50

55

60

65

14

of any one of Examples 11-18 can optionally include further
comprising identifying the set of job rings is further based on
the tracked number of job entries for each job ring.

Example 20 is an apparatus for implementing job arbitra-
tion with ordering status. In Example 20 the apparatus
includes a plurality of registers to store availability status
from each of the plurality of job rings, availability status from
each of the plurality of processors, job entry completion
status from an order manager, a threshold for number of job
entries pending, and a threshold for number of job entries
withheld from completion. The apparatus of Example 20
further includes a thresholding component communicably
coupled to the plurality of registers, the thresholding compo-
nent to determine a number of job entries currently process-
ing from each of'the plurality of job rings, determine a number
of job entries currently withheld from completion from each
of'the plurality of job rings, and identify a set of job rings from
the plurality of job rings that do not exceed either of the
threshold for number of job entries pending or the threshold
for number of job entries withheld from completion. The
apparatus of Example 20 further includes an arbitration com-
ponent to communicably coupled to the plurality of registers
and the thresholding component, the arbitration component
to select, from the identified set of job rings, a job ring based
on a round-robin selection scheme, and select, based on the
received availability status of the plurality of processors, a
processor to process a job entry from the selected job ring
based on the round-robin selection scheme.

In Example 21, the subject matter of Example 20 can
optionally include wherein each of the plurality of job rings
tracks tasks corresponding to a thread of the originating pro-
cessing device. In Example 22, the subject matter of any one
of Examples 20-21 can optionally include wherein the order
manager to receive an order identifier (ID) of the job entry
when the selected processor completes processing of the job
entry, determine the job ring from which the job entry origi-
nated, determine a current order ID completion number asso-
ciated with the determined job ring, when the determined
current order ID completion number equals the received order
1D of the job entry, complete processing of the job entry, and
when the determined current order ID completion number
does not equal the received order ID, withhold the job entry
from completion until the current order ID completion num-
ber does equal the received order 1D.

In Example 23, the subject matter of any one of Examples
20-22 can optionally include wherein withholding the job
entry from completion further comprises the order manager
to place a completion message for the job entry and the
received order ID in a queue, and send a job entry completion
status update to the job assigner that informs the job assigner
that the job entry is awaiting completion at the order manager.
In Example 24, the subject matter of any one of Examples
20-23 can optionally include wherein completing the pro-
cessing of the job entry further comprises the order manager
to write of the completion message for the job entry to a
response ring of the job ring originating the job entry, and
send a job entry completion status update to the job assigner
that informs the job assigner that processing of the job entry
is completed.

In Example 25, the subject matter of any one of Examples
20-24 can optionally include wherein the threshold condi-
tions comprise a number of pending job entries per job ring
that can be pending processing by the one or more processors,
and a number of job entries per job ring that can be awaiting
completion at the order manager. In Example 26, the subject
matter of any one of Examples 20-25 can optionally include
wherein each job ring of the plurality of job rings is imple-

US 9,286,125 B2

15

mented as a circular buffer, and wherein the job assigner
further to select the job entry from the head of the selected job
ring. In Example 27, the subject matter of any one of
Examples 20-26 can optionally include wherein the thresh-
olding component further to track, for each job ring of the
plurality of job rings, a number of job entries from the job ring
that are currently being processed by the one or more proces-
sors. All optional features of the apparatus described above
may also be implemented with respect to the method or pro-
cess described herein.

Example 28 is non-transitory computer-readable medium
for implementing job arbitration with ordering status. In
Example 28, the non-transitory machine-readable medium
includes data that, when accessed by a processing device,
cause the processing device to perform operations compris-
ing receiving, by an order manager, an order identifier (ID) of
a job entry when the processor completes processing of the
job entry, determining a job ring of a plurality of job rings
from which the job entry originated, determining a current
order ID completion number associated with the determined
job ring, when the determined current order ID completion
number equals the received order ID of the job entry, com-
pleting processing of the job entry, and when the determined
current order ID completion number does not equal the
received order ID, withholding the job entry from completion
until the current order ID completion number does equal the
received order ID.

In Example 29, the subject matter of Example 28 can
optionally include wherein the withholding the job entry from
completion further comprises placing a completion message
for the job entry and the received order ID in a queue, and
sending a job entry completion status update to a job assigner,
the job entry completion status update to inform the job
assigner that the job entry is awaiting completion at the order
manager. In Example 30, the subject matter of any one of
Examples 28-29 can optionally include wherein the complet-
ing the processing of the job entry further comprises writing
of'the completion message for the job entry to a response ring
of the job ring originating the job entry, and sending a job
entry completion status update to a job assigner, the job entry
completion status update to inform the job assigner that pro-
cessing of the job entry is completed.

In Example 31, the subject matter of any one of Examples
28-30 can optionally include wherein a job assigner that is
communicably coupled to the order manager is to receive
availability status from the plurality of job rings, availability
status from the plurality of processors, and job entry comple-
tion status from the order manager, identify, based on the
received job entry completion status, a set of job rings from
the plurality of job rings that do not exceed threshold condi-
tions maintained by the job assigner, select, from the identi-
fied set of job rings, a job ring from which to pull another job
entry for assignment, wherein the selecting is based on the
received availability status of the plurality of job rings, and
select, based on the received availability status of the plurality
of processors, a processor to receive the assignment of the
another job entry for processing.

In Example 32, the subject matter of any one of Examples
28-31 can optionally include wherein the threshold condi-
tions comprise a number of pending job entries per job ring
that can be pending processing by the one or more processors,
and a number of job entries per job ring that can be awaiting
completion at the order manager.

Example 33 is an apparatus for implementing job arbitra-
tion with ordering status comprising means for receiving
availability status from a plurality of job rings, availability
status from a plurality of processors, and job entry completion

10

30

40

45

16

status from an order manager, means for identifying, based on
the received job entry completion status, a set of job rings
from the plurality of job rings that do not exceed threshold
conditions maintained by the job assigner, means for select-
ing, from the identified set of job rings, a job ring from which
to pull a job entry for assignment, wherein the selecting is
based on the received availability status of the plurality of job
rings, and means for selecting, based on the received avail-
ability status of the plurality of processors, a processor to
receive the assignment of the job entry for processing. In
Example 34, the subject matter of Example 33 can optionally
include the apparatus further configured to perform the
method of any one of the Examples 12 to 19.

Example 35 is at least one machine readable medium com-
prising a plurality of instructions that in response to being
executed on a computing device, cause the computing device
to carry out a method according to any one of Examples
11-19. Example 36 is an apparatus for implementing job
arbitration with ordering status, configured to perform the
method of any one of Examples 11-19. Example 37 is an
apparatus comprising means for performing the method of
any one of Examples 11-19. Specifics in the Examples may be
used anywhere in one or more embodiments.

While the disclosure has been described with respect to a
limited number of embodiments, those skilled in the art will
appreciate numerous modifications and variations there from.
It is intended that the appended claims cover all such modi-
fications and variations as fall within the true spirit and scope
of this disclosure.

A design may go through various stages, from creation to
simulation to fabrication. Data representing a design may
represent the design in a number of manners. First, as is useful
in simulations, the hardware may be represented using a
hardware description language or another functional descrip-
tion language. Additionally, a circuit level model with logic
and/or transistor gates may be produced at some stages of the
design process. Furthermore, most designs, at some stage,
reach a level of data representing the physical placement of
various devices in the hardware model. In the case where
conventional semiconductor fabrication techniques are used,
the data representing the hardware model may be the data
specifying the presence or absence of various features on
different mask layers for masks used to produce the integrated
circuit. In any representation of the design, the data may be
stored in any form of a machine readable medium. A memory
or a magnetic or optical storage such as a disc may be the
machine readable medium to store information transmitted
via optical or electrical wave modulated or otherwise gener-
ated to transmit such information. When an electrical carrier
wave indicating or carrying the code or design is transmitted,
to the extent that copying, buffering, or re-transmission of the
electrical signal is performed, a new copy is made. Thus, a
communication provider or a network provider may store on
atangible, machine-readable medium, at least temporarily, an
article, such as information encoded into a carrier wave,
embodying techniques of embodiments of the present inven-
tion.

A module as used herein refers to any combination of
hardware, software, and/or firmware. As an example, a mod-
ule includes hardware, such as a micro-controller, associated
with a non-transitory medium to store code adapted to be
executed by the microcontroller. Therefore, reference to a
module, in one embodiment, refers to the hardware, which is
specifically configured to recognize and/or execute the code
to be held on a non-transitory medium. Furthermore, in
another embodiment, use of a module refers to the non-
transitory medium including the code, which is specifically

US 9,286,125 B2

17

adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the non-
transitory medium. Often module boundaries that are illus-
trated as separate commonly vary and potentially overlap. For
example, a first and a second module may share hardware,
software, firmware, or a combination thereof, while poten-
tially retaining some independent hardware, software, or
firmware. In one embodiment, use of the term logic includes
hardware, such as transistors, registers, or other hardware,
such as programmable logic devices.

Use of the phrase ‘configured to,” in one embodiment,
refers to arranging, putting together, manufacturing, offering
to sell, importing and/or designing an apparatus, hardware,
logic, or element to perform a designated or determined task.
In this example, an apparatus or element thereof that is not
operating is still ‘configured to’ perform a designated task if'it
is designed, coupled, and/or interconnected to perform said
designated task. As a purely illustrative example, a logic gate
may provide a 0 or a 1 during operation. But a logic gate
‘configured to’ provide an enable signal to a clock does not
include every potential logic gate that may provide a 1 or 0.
Instead, the logic gate is one coupled in some manner that
during operation the 1 or O output is to enable the clock. Note
once again that use of the term ‘configured to’ does not
require operation, but instead focus on the latent state of an
apparatus, hardware, and/or element, where in the latent state
the apparatus, hardware, and/or element is designed to per-
form a particular task when the apparatus, hardware, and/or
element is operating.

Furthermore, use of the phrases ‘to,” ‘capable of/to,” and or
‘operable to,” in one embodiment, refers to some apparatus,
logic, hardware, and/or element designed in such a way to
enable use of the apparatus, logic, hardware, and/or element
in a specified manner. Note as above that use of to, capable to,
or operable to, in one embodiment, refers to the latent state of
an apparatus, logic, hardware, and/or element, where the
apparatus, logic, hardware, and/or element is not operating
but is designed in such a manner to enable use of an apparatus
in a specified manner.

A value, as used herein, includes any known representation
of'a number, a state, a logical state, or a binary logical state.
Often, the use of logic levels, logic values, or logical values is
also referred to as 1’s and 0’s, which simply represents binary
logic states. For example, a 1 refers to a high logic level and
Orefers to alow logic level. In one embodiment, a storage cell,
such as a transistor or flash cell, may be capable of holding a
single logical value or multiple logical values. However, other
representations of values in computer systems have been
used. For example the decimal number ten may also be rep-
resented as a binary value of 1010 and a hexadecimal letter A.
Therefore, a value includes any representation of information
capable of being held in a computer system.

Moreover, states may be represented by values or portions
of values. As an example, a first value, such as a logical one,
may represent a default or initial state, while a second value,
such as a logical zero, may represent a non-default state. In
addition, the terms reset and set, in one embodiment, refer to
a default and an updated value or state, respectively. For
example, a default value potentially includes a high logical
value, i.e. reset, while an updated value potentially includes a
low logical value, i.e. set. Note that any combination of values
may be utilized to represent any number of states.

The embodiments of methods, hardware, software, firm-
ware or code set forth above may be implemented via instruc-
tions or code stored on a machine-accessible, machine read-

10

15

20

25

30

35

40

45

50

55

60

65

18

able, computer accessible, or computer readable medium
which are executable by a processing element. A non-transi-
tory machine-accessible/readable medium includes any
mechanism that provides (i.e., stores and/or transmits) infor-
mation in a form readable by a machine, such as a computer
or electronic system. For example, a non-transitory machine-
accessible medium includes random-access memory (RAM),
such as static RAM (SRAM) or dynamic RAM (DRAM);
ROM; magnetic or optical storage medium; flash memory
devices; electrical storage devices; optical storage devices;
acoustical storage devices; other form of storage devices for
holding information received from transitory (propagated)
signals (e.g., carrier waves, infrared signals, digital signals);
etc, which are to be distinguished from the non-transitory
mediums that may receive information there from.

Instructions used to program logic to perform embodi-
ments of the invention may be stored within a memory in the
system, such as DRAM, cache, flash memory, or other stor-
age. Furthermore, the instructions can be distributed via a
network or by way of other computer readable media. Thus a
machine-readable medium may include any mechanism for
storing or transmitting information in a form readable by a
machine (e.g., a computer), but is not limited to, floppy dis-
kettes, optical disks, Compact Disc, Read-Only Memory
(CD-ROMs), and magneto-optical disks, Read-Only
Memory (ROMs), Random Access Memory (RAM), Eras-
able Programmable Read-Only Memory (EPROM), Electri-
cally Erasable Programmable Read-Only Memory (EE-
PROM), magnetic or optical cards, flash memory, or a
tangible, machine-readable storage used in the transmission
of information over the Internet via electrical, optical, acous-
tical or other forms of propagated signals (e.g., carrier waves,
infrared signals, digital signals, etc.). Accordingly, the com-
puter-readable medium includes any type of tangible
machine-readable medium suitable for storing or transmitting
electronic instructions or information in a form readable by a
machine (e.g., a computer)

Reference throughout this specification to “one embodi-
ment” or “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiment is included in at least one embodiment of the
present invention. Thus, the appearances of the phrases “in
one embodiment” or “in an embodiment” in various places
throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular fea-
tures, structures, or characteristics may be combined in any
suitable manner in one or more embodiments.

In the foregoing specification, a detailed description has
been given with reference to specific exemplary embodi-
ments. It will, however, be evident that various modifications
and changes may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
appended claims. The specification and drawings are, accord-
ingly, to be regarded in an illustrative sense rather than a
restrictive sense. Furthermore, the foregoing use of embodi-
ment and other exemplarily language does not necessarily
refer to the same embodiment or the same example, but may
refer to different and distinct embodiments, as well as poten-
tially the same embodiment.

What is claimed is:

1. A system, comprising:

a plurality of job rings to receive jobs from an originating

processing device;

a plurality of processors communicably coupled with a

plurality of coprocessors;

an order manager communicably coupled to the plurality

of processors; and

US 9,286,125 B2

19

ajob assigner communicably coupled to the plurality of the

job rings and the plurality of processors, the job assigner

to, for respective job entries of a job:

receive availability status from each of the plurality of
job rings, availability status from each of the plurality
of processors, and job entry completion status from
the order manager; and

select, responsive to both the received availability sta-
tuses and the job entry completion status, a processor
of the plurality of processors to receive the assign-
ment of a job entry from one of the plurality of job
rings for processing; and

wherein the order manager is to:

mark the job corresponding to the job entries as com-
plete when the job entries are executed in a correct
response order; and

delay writing a result of a first job entry of the job entries
back to an originating job ring when a second job
entry of the job entries has not yet been completed and
the first job entry is to be written back to the originat-
ing job ring after a result of the second job entry
according to the correct response order.

2. The system of claim 1, wherein the job assigner further
to:

identify, based on the job entry completion status, a set of

job rings from the plurality of job rings that do not
exceed threshold conditions maintained by the job
assigner; and

select, from the set of job rings, a job ring from which to

pull the job entry for assignment, wherein the selecting
is responsive to the availability status of the plurality of
job rings.

3. The system of claim 1, wherein each of the job rings
tracks tasks corresponding to a thread of the originating pro-
cessing device.

4. The system of claim 1, wherein the order manager fur-
ther to:

receive an order identifier (ID) of the first job entry when

the selected processor completes processing of the first
job entry;

determine the originating job ring from which the first job

entry originated;

determine a current order ID completion number associ-

ated with the originating job ring;

when the current order ID completion number equals the

received order ID of the first job entry, complete pro-
cessing of the first job entry; and

when the current order ID completion number does not

equal the order ID, withhold the first job entry from
completion until the current order ID completion num-
ber does equal the received order 1D.

5. The system of claim 4, wherein withholding the first job
entry from completion further comprises the order manager
to:

place a completion message for the first job entry and the

received order 1D in a queue; and

send a job entry completion status update to the job

assigner that informs the job assigner that the first job
entry is awaiting completion at the order manager.

6. The system of claim 4, wherein completing the process-
ing of the first job entry further comprises the order manager
to:

write a completion message of the first job entry to a

response ring of the job ring originating the first job
entry; and

40

45

55

20

send a job entry completion status update to the job
assigner that informs the job assigner that processing of
the first job entry is completed.

7. The system of claim 2, wherein the threshold conditions
comprise:

a number of pending job entries per job ring that can be

pending processing by the plurality of processors; and

a number of job entries per job ring that can be awaiting

completion at the order manager.
8. The system of claim 1, wherein each job ring of the
plurality of job rings is implemented as a circular buffer, and
wherein the job assigner further to select the first job entry and
the second job entry sequentially from a head of the originat-
ing job ring.
9. The system of claim 1, wherein the job assigner further
to track, for each job ring of the plurality of job rings, a
number of job entries from the job ring that are currently
being processed by the plurality of processors.
10. The system of claim 2, wherein to identify the set of job
rings is further based on the tracked number of job entries for
each job ring.
11. A method implemented by at least one processing
device of a job assigner and an order manager, the method
comprising:
receiving, using the at least one processing device, by the
job assigner communicably coupled to a plurality of
processors, availability status from a plurality of job
rings, availability status from the plurality of processors,
and job entry completion status from the order manager;

identifying, using the at least one processing device and
based on the job entry completion status, a set of job
rings from the plurality of job rings that do not exceed
threshold conditions maintained by the job assigner;

selecting, using the at least one processing device and from
the identified set of job rings, a job ring from which to
pull a job entry for assignment for respective job entries
of ajob, wherein the selecting is based on the availability
status of the plurality of job rings;
selecting, using the at least one processing device and
based on the received availability status of the plurality
of processors, a processor from the plurality of proces-
sors to receive the assignment of each respective job
entry for processing;
marking, using the at least one processing device, the job
entries as complete when the job entries are executed in
a correct response order; and

delaying, using the at least one processing device, writing
a result of a first job entry of the job entries back to an
originating job ring when a second job entry of the job
entries has not yet been completed and the first job entry
is to be written back to the originating job ring after a
result of the second job entry according to the correct
response order.

12. The method of claim 11, wherein each of the job rings
tracks tasks corresponding to a thread of an originating pro-
cessing device.

13. The method of claim 11, further comprising receiving,
from the order manager, a job entry completion status update
that indicates the first job entry withheld at the order manager,
wherein the first job entry is withheld by the order manager
when, subsequent to processing of the first job entry at the
selected processor, an order identifier (ID) of the first job
entry does not match a current order ID completion number of
the originating job ring.

14. The method of claim 11, further comprising receiving,
from the order manager, a job entry completion status update
that indicates the second job entry is complete, wherein the

US 9,286,125 B2

21

second job entry is indicated as complete by the order man-
ager when, subsequent to processing of the second job entry
atthe selected processor, an order identifier (ID) of the second
job entry matches a current order ID completion number of
the originating job ring.

15. The method of claim 11, wherein the threshold condi-
tions comprise:

a number of pending job entries per job ring that can be

pending processing by the plurality of processors; and

a number of job entries per job ring that can be awaiting

completion at the order manager.

16. The method of claim 11, further comprising tracking,
for each job ring of the plurality of job rings, a number of job
entries from the job ring that are currently being processed by
the plurality of processors.

17. The method of claim 16, wherein identifying the set of
job rings is further based on the number of job entries tracked
for each respective job ring.

18. An apparatus comprising:

aplurality of registers to store availability status from each

of'a plurality of job rings, availability status from each of
aplurality of processors, and job entry completion status
from an order manager;

at least one processing device to execute a job assigner and

an order manager, the job assigner communicatively

coupled to the plurality of job rings and the order man-

ager communicatively coupled to the plurality of pro-

cessors, wherein, for respective job entries of a job, the

at least one processing device to:

select, responsive to both the received availability sta-
tuses and the job entry completion status, a processor
of the plurality of processors to receive the assign-
ment of a job entry from one of the plurality of job
rings for processing;

mark the job corresponding to the job entries as com-
plete when the job entries are executed in a correct
response order; and

delay writing a result of a first job entry of the job entries
back to an originating job ring when a second job
entry of the job entries has not yet been completed and
the first job entry is to be written back to the originat-
ing job ring after a result of the second job entry
according to the correct response order.

19. The apparatus of claim 18, wherein each of the plurality
of job rings tracks tasks corresponding to a thread of an
originating processing device.

20. The apparatus of claim 18, wherein the order manager
to:

receive an order identifier (ID) of the first job entry when

the selected processor completes processing of the job
entry;

determine the job ring from which the first job entry origi-

nated;

5

10

15

20

25

30

35

40

45

50

22

determine a current order ID completion number associ-

ated with the determined job ring;

when the current order ID completion number equals the

received order ID of the job entry, complete processing
of the first job entry; and

when the current order ID completion number does not

equal the received order 1D, withhold the first job entry
from completion until the current order ID completion
number does equal the received order ID.

21. The apparatus of claim 20, wherein withholding the
first job entry from completion further comprises the order
manager to:

place a completion message for the first job entry and the

received order ID in a queue; and

send a job entry completion status update to the job

assigner that informs the job assigner that the first job
entry is awaiting completion at the order manager.

22. The apparatus of claim 20, wherein the order manager
further to:

write a completion message for the first job entry to a

response ring of the job ring originating the first job
entry; and

send a job entry completion status update to the job

assigner that informs the job assigner that processing of
the first job entry is completed.

23. The apparatus of claim 18, wherein the registers are
further to store a threshold for number of job entries pending
and a threshold for number of job entries withheld from
completion, further comprising a thresholding component
communicably coupled to the plurality of registers, the
thresholding component to:

determine a number of job entries currently processing

from each of the plurality of job rings;
determine a number of job entries currently withheld from
completion from each of the plurality of job rings; and

identify a set of job rings from the plurality of job rings that
do not exceed either of the threshold for number of job
entries pending or the threshold for number of job
entries withheld from completion.

24. The apparatus of claim 18, wherein each job ring of'the
plurality of job rings is implemented as a circular buffer, and
wherein the job assigner further to select the second job entry
from a head of the selected job ring.

25. The apparatus of claim 23, wherein the thresholding
component further to track, for each job ring of the plurality
of job rings, a number of job entries from the job ring that are
currently being processed by the plurality of processors.

26. The apparatus of claim 23, wherein the threshold for
number of job entries comprises a number of pending job
entries per job ring that are pending processing by the plural-
ity of processors; and the threshold for number of job entries
withheld from completion comprises a number of job entries
per job ring that are awaiting completion at the order manager.

#* #* #* #* #*

